KAPABIOSYSTEMS ΚΑΡΔ **HYPERPLUS GUIDE TO SUCCESS**

Got EDTA?

- The enzymatic fragmentation reaction is sensitive to EDTA.
- The best strategy is to remove EDTA by means of a cleanup step before fragmentation.
- If your DNA contains EDTA, please see Appendix 2 (p. 16) of the Technical Data Sheet (TDS).

How much DNA do I need?

Application	Sample type	Recommended input
WGS	Complex gDNA (high quality)	50 ng - 1 µg
Target capture (WES, custom panels)	Complex gDNA (high quality)	10 ng - 1 μg
WGS, target capture	FFPE DNA	≥50 ng (quality dependent)
WGS	Microbial DNA	1 ng - 1 µg
WGS (PCR-free)	High-quality DNA	≥50 ng (no SS)* ≥500 ng (w/SS)*
Targeted sequencing	Long amplicons	≥1 ng

ENZYMATIC FRAGMENTATION variable time

> incubate at 37°C

KEEP GOING

assess size after amplification

place ample at 4°C

Get to chopping.

- Mode and size distribution of DNA is controlled by fragmentation time and temperature.
- Try a range of fragmentation times to determine optimal insert size.
- For ease of sample processing, place samples with the longest fragmentation time in the thermal cycler first. Add samples with shorter fragmentation times at appropriate intervals.

Mode fragment length	Incubation time at 37°C*	Optimization range	
600 bp	5 min	3 – 10 min	
350 bp	10 min	5 – 20 min	
200 bp	20 min	10 – 25 min	
150 bp	30 min	20 - 40 min	

*These parameters are a good starting point for high-quality genomic DNA. Please refer to Appendix 2: Optimization of Fragmentation Parameters of the TDS for guidelines on how to optimize fragmentation time and temperature, if needed.

It's not a typo!

• Ensure that you are adding the correct volume of KAPA Frag Buffer (5 μ L) and KAPA Frag Enzyme (10 μ L) to each reaction.

Component	Volume
Double-stranded DNA (with KAPA Frag Conditioning Solution, if needed)	35 μL
KAPA Frag Buffer (10X)	5 μL
KAPA Frag Enzyme	10 µL
Total volume	50 μL

4°C

How much adapter do I need?

• Adapter concentration affects ligation efficiency, as well as adapter and adapter-dimer carry-over during the postligation cleanup.

Input DNA	Adapter stock concentration	Adapter:insert molar ratio
1 µg	15 μM	10:1
500 ng	15 μΜ	20:1
250 ng	15 μΜ	40:1
100 ng	15 μΜ	100:1
50 ng	15 μΜ	200:1
25 ng	7.5 μM	200:1
10 ng	3 μΜ	200:1
5 ng	1.5 μM	200:1
2.5 ng	750 nM	200:1
1 ng	300 nM	200:1

input DNA

4°C

enzymatic fragmentation

Don't do more work than you have to.

• Determine how much final library material is required for your downstream application (e.g., capture, sequencing).

Input into library	Number of cycles required to generate	
construction	100 ng library	1 μg library
1 µg	0	0 - 1
500 ng	0	2 - 3
250 ng	0 - 1	3 – 5
100 ng	0 - 2	5 - 6
50 ng	3 – 5	7 - 8
25 ng	5 - 6	8 - 10
10 ng	7 - 9	11 - 13
5 ng	9 - 11	13 - 14
2.5 ng	11 - 13	14 - 16
1 ng	13 - 15	17 - 19

NO

Do you have

adapter-dimers?

NO

Uh-oh...it's okay, it happens.

That's what we're here for. Contact us at support@kapabiosystems.com

target capture or sequencing

Repeat Step 7

library amplification

1X post-amp cleanup

YES

 \bigcirc

Great! Now you want more HyperPlus, don't you?

KAPABIOSYSTEMS *evolving* better science

WANT AN EVEN LARGER VERSION OF THIS GUIDE?

Request your free poster at www.kapabiosystems.com/HPlusguide

